Dr. J Metz (@drjmetz, blog), Technical Director of Systems Design at AMD and Chair of SNIA BoD, has been on our show before discussing SNIA research directions. We decided this year to add an annual podcast to discuss highlights from their Storage Developers Conference 2023 (SDC23).
Dr, J is working at AMD to help raise their view from a pure components perspective to a systems perspective. On the other hand, at SNIA, we can see them moving out of just storage interface technology into memory (of all things) and real long term, storage archive technologies.
SDC is SNIA’s main annual conference, which brings storage developers together with storage users to discuss all the technologies underpinning storing the data we all care so much about. Listen to the podcast to learn more
Podcast: Play in new window | Download (Duration: 48:15 — 66.3MB) | Embed
Subscribe: Apple Podcasts | Google Podcasts | Spotify | Stitcher | Email | RSS
SNIA is trying to get their hands around trends impacting the IT industry today. These days, storage, compute and networking are all starting to morph into one another and the boundary lines, always tenuous at best, seem to be disappearing.
Aside from industry standards work that SNIA has always been known for, they are also deeply involved in education. One of their more popular artifacts is the SNIA Dictionary (recently moved online only), which provides definitions for probably over a 1000 storage terms. But SDC also has a lot of tutorials and other educational sessions worthy of time and effort. And all SDC sessions will be available online, at some point. (Update 10/25/23: they are all available now at Sessions | SDC 2023 website)
SNIA also presented at SFD26, while SDC23 was going on. At SFD26, SNIA discussed DNA data storage which is a recent technical affiliate and a new Smart Data Transfer Interface (SDXI), a software defined interface to perform memory to memory DMA.
First up, DNA storage, the DNA team said that they pretty much are able to store and access GB of DNA data storage today, without breaking a sweat and are starting to consider how to scale that up to TB of DNA storage. We’ve discussed DNA data storage before on GBoS podcasts (see: 108: GreyBeards talk DNA storage... )
The talk at SFD26 was pretty detailed. Turns out the DNA data storage team have to re-invent a lot of standard storage technologies (catalogs/Indexes, metadata, ECC, etc) in order to support a DNA data soup of unstructured data.
For exampe, ECC for DNA segments (snippets) would be needed to correctly store and retrieve DNA data segments, And these segments could potentially be replicated 1000s of times in a DNA storage cell. And all DNA data segments would be tagged with file oriented metadata indicating (segment) address within file, file name or identifier, date created, etc.
As far as what an application for DNA storage would look like, Dr. J mentioned write once and read VERY infrequently. It turns out while making 1000s of copies of DNA data segments is straightforward, inexpensive and trivial, reading it is another matter entirely. And as was discussed at SFD26, reading DNA storage, as presently conceived, is destructive. (So maybe having lots of copies is a good and necessary idea.)
But the DNA guru’s really have to a come up with methods for indexing, searching, and writing/reading data quickly. Todays disks have file systems that are self-defining. If you hand someone an HDD, it’s fairly straightforward to read information off of it and determine the file system used to create it. These days, with LTO-FS, the same could be said for LTO tape.
DNA is intended to be used to store data for 1000s of years. They have retrieved intact DNA from a number of organisms that are over 50K years old. Retaining applications that can access, format and process data after a 1000 years is yet another serious problem someone will need to solve.
Next up was SDXI, a software defined DMA solution, that any application can use to move data from one memory to another without having to resort to 20 abstraction layers to do it. SDXI is just about moving data between memory banks.
Today, this is all within one system/server, but as CXL matures and more and more hardware starts supporting CXL 2 and 3, shared memory between servers will become more pervasive all on a CXL memory interface.
Keith tried bringing it home to moving data between containers or VMs and all that’s possible today within the same memory and sometime in the future between shared memory and local memory.
Memory to memory transfers have to be done securely. It’s not like accessing memory from some other process hasn’t been frought with security exposures in the past. And Dr. J assured me that SDXI was built from the ground up with security considerations front and center.
To bring it all back home. SNIA has always been and always will be concerned with data. Whether that data resides on storage, memory or god forbid, in transit somewhere over a network. Keith went as far as to say that the network was storage, I felt that was a step too far.
Dr. J Metz, Technical Director of Systems at AMD, Chair of SNIA BoD

J is the Chair of SNIA’s (Storage Networking Industry Association) Board of Directors and Technical Director for Systems Design for AMD where he works to coordinate and lead strategy on various industry initiatives related to systems architecture. Recognized as a leading storage networking expert, J is an evangelist for all storage-related technology and has a unique ability to dissect and explain complex concepts and strategies. He is passionate about the innerworkings and application of emerging technologies.
J has previously held roles in both startups and Fortune 100 companies as a Field CTO, R&D Engineer, Solutions Architect, and Systems Engineer. He has been a leader in several key industry standards groups, sitting on the Board of Directors for the SNIA, Fibre Channel Industry Association (FCIA), and Non-Volatile Memory Express (NVMe). A popular blogger and active on Twitter, his areas of expertise include NVMe, SANs, Fibre Channel, and computational storage.
J is an entertaining presenter and prolific writer. He has won multiple awards as a speaker and author, writing over 300 articles and giving presentations and webinars attended by over 10,000 people. He earned his PhD from the University of Georgia.
One Reply to “155: GreyBeards SDC23 wrap up podcast with Dr. J Metz, Technical Dir. of Systems Design AMD and Chair of SNIA BoD”