104: GreyBeards talk new cloud defined (shared) storage with Siamak Nazari, CEO Nebulon

Ray has known Siamak Nazari (@NebulonInc), CEO Nebulon for three companies now but has rarely had a one (two) on one discussion with him. With Nebulon just emerging from stealth (a gutsy move during the pandemic), the GreyBeards felt it was a good time to get Siamak on the show to tell us what he’s been up to. Turns out he and Nebulon decided it was time to completely rethink/rearchitect shared storage for the new data center.

At his prior company, Siamak spent a lot of time with many customers discussing the problems they had dealing with the complexity of managing, provisioning and maintaining multiple shared storage arrays. Somewhere in all those discussions Siamak saw this as a problem that needed a radical solution. If we could just redo shared storage from the ground up, there might be a solution to all these problems.

Redefining shared storage

Nebulon’s new approach to shared storage starts with an SPU card which replaces SAS RAID cards in a server. But instead of creating SAS RAID groups, the SPU creates a shareable, enterprise class, pool of storage across a throng of servers.

They call a collection of servers with SPUs, Cloud Defined Storage (CDS) and it creates a Nebulon nPod. An nPod essentially consists of multiple servers with SPU cards, with or without attached SSD storage, that are provisioned, managed and monitored via the cloud. Nebulon nPod servers are elements or nodes of a shared storage pool across all interconnected SPU servers in a data center.

In an SPU server with local (SAS, SATA, NVMe) SSD storage, the SPU creates an erasure coded pool of storage which can be used to serve (SAS) LUNs to this or any other SPU attached server in the nPod. In a SPU server without local SSD storage, the SPU provides access to any other SPU server shared storage in the nPod. Nebulon nPods only works with flash storage, it doesn’t support spinning media.

The SPU can supply boot storage for its server. There’s no need to have the CPU running OS code to use nPod shared storage. Yes, the SPU needs power and an active PCIe bus to work, but the functionality of an SPU doesn’t require an operational OS to work. The SPU provides a SAS LUN interface to server CPUs.

Each SPU has dual port access to an inter-cluster (25GbE) interconnect that connects all SPUs to the nPod. The nPod inter-cluster protocol is proprietary but takes advantage of standard TCP/IP services across the network with standard 25GbE switching.

The SPU firmware insures that it stays connected as long as power is available to the server. Customers can have more than one SPU in a server but these would be used for more IO performance. Each SPU also has 32GB of NVRAM for caching purposes and it’s also used for power fail fault tolerance.

In the unlikely case that the server and SPU are completely down (e.g. power outage), clients can still access that SPUs data storage, if it was mirrored (see below). When the SPU server comes back up, it will be resynched with any data that had been changed.

Other Nebulon storage features

Nebulon supports data-at-rest encryption, compression and deduplication for customer data. That way customer data is never in plain text as it travels across the nPod or even within the server from the SPU to SSD storage. Also any customer data written to an nPod can be optionally mirrored and as noted above, is protected via erasure coding.

The SPU also supports snapshotting of customer LUN data. So clients can take copies of LUNs and use these for backups, test, dev, etc. SPUs also support asynchronous or synchronous replication between nPods. For synchronous replication and mirrored data, the originating host only sees the IO complete after the data has been received at the target SPU or nPod.

Metadata for the nPod that defines LUN configurations and which server has LUN data is kept across the cluster in each SPU. But metadata on the location of user data within a server is only kept in that server’s SPU.

We asked Siamak whether nPods support SCM (storage class memory). He said not yet, but they’re looking at SCM NVMe storage for use as a potential metadata and data cache for SPUs.

Nebulon Application Centric storage

All the above storage features are present in most enterprise class storage systems. But what sets Nebulon apart from all other shared storage arrays is that their control plane is entirely in the cloud. That is customers point their browser to Nebulon’s control plane and use it to configure, provision and manage the nPod storage pool. Nebulon supports application templates that can be used to configure nPod storage to support standardized applications, such as VMware VMs, MongoDB, persistent storage for K8S containers, bare metal Linux apps, etc.

With the nPod’s control plane in the cloud it makes provisioning, managing and monitoring storage services much more agile. Nebulon can literally roll out new control plane updatesy to their install base on an almost daily basis. Just like any other cloud based or SAAS application. Customers receive the updated nPod control plane functionality by simply refreshing their browser page.

Nebulon’s GoToMarket

Near the end of our podcast, we asked Siamak about how Nebulon was going to access the market. Nebulon’s goto market is to use server OEMs. That is, they have signed agreements with two (and working on a third) server vendors to sell SPU cards with Nebulon control plane access.

During server purchases, customers configure their servers but now along with SAS RAID card options they will now see an Nebulon SPU option. OEM server vendors will bundle SPU hardware and Nebulon control plane access along with all other server components such as CPU’s, SSDs, NICs, etc, This way, the customer will receive a pre-installed SPU card in their server and will be ready to configure nPod LUNs as soon as the server powers on in their network.

Nebulon will go GA in the 3rd quarter.

The podcast ran ~43 minutes. Siamak has always been a pleasure to talk with and is very knowledgeable about the problems customers have in today’s data center environments. Nebulon has given him and his team the way to rethink storage and address these serious issues. Matt and I had a good time talking with Siamak. Listen to the podcast to learn more.

This image has an empty alt attribute; its file name is Spotify_Logo_CMYK_Black-1024x307.png
This image has an empty alt attribute; its file name is play_prism_hlock_2x-300x64.png
This image has an empty alt attribute; its file name is Subscribe_on_iTunes_Badge_US-UK_110x40_0824.png

Siamak Nazari, CEO Nebulon

Siamak Nazari is the CEO and Co-founder of Nebulon. Siamak has over 25 years of experience working on distributed and highly available systems.

In his position as HPE Fellow and VP, he was responsible for setting technical direction for HPE 3PAR and its portfolio of software and hardware. He worked on HPE 3PAR technology from 2000 to 2018, responsible for designing and implementing distributed memory management and the high availability features of the system.

Prior to joining 3PAR, Siamak was the technical lead for distributed highly available Proxy Filesystem (pxfs) of Sun Cluster 3.0.