136: Flash Memory Summit 2022 wrap-up with Tom Coughlin, President, Coughlin Assoc.

We have known Tom Coughlin (@thomascoughlin), President, Coughlin Associates for a very long time now. He’s been an industry heavyweight almost as long as Ray (maybe even longer). Tom has always been very active in storage media, storage drives, storage systems and memory as well as active in the semiconductor space. All this made him a natural to perform as Program Chair at Flash Memory Summit (FMS)2022, so it’s great to have on the show to talk about the conference.

Just prior to the show, Micron announced that they had achieved 232 layer 3D NAND(in sampling methinks). Which would be a major step on the roadmap to higher density NAND. Micron was not at the show, but held an event at Levi stadium, not far from the conference center.

During a keynote, SK Hynix announced they had achieved 238 layer NAND, just exceeding Micron’s layer count. Other vendors at the show promised more layers as well but also discussed different ways other than layer counts to scale capacity, such as shrinking holes, moving logic, logical (more bits/cell) scaling, etc. PLC (5 bits/cell) was discussed and at least one vendor mentioned 6LC (not sure there’s a name yet but HxLC maybe?). Just about any 3D NAND is capable of logical scaling in bits/cell. So 200+ layers will mean more capacity SSDs over time.

The FMS conference seems to be expanding beyond Flash into more storage technologies as well as memory systems. In fact they had a session on DNA storage at the show.

In addition, there was a lot of talk about CXL, the new shared memory standard which supports shared memory over PCIe at FMS2022. PCIe is becoming a near universal connection protocol and is being used for 2d scaling of chips as a chip to chip interconnect as well as distributed storage and shared memory interconnect.

The CXL vision is that servers will still have DDR DRAM memory but they can share external memory systems. With shared memory systems in place memory, memory could be pooled and aggregated into one large repository which could then be carved up and parceled out to servers to support the workload dejour. And once those workloads are done, recarved up for the next workload to come. Almost like network attached storage only in this world its network attached memory.

Tom mentioned that CXL is starting to adopting other memory standers such as the Open Memory Interface (OMI) which has also been going on for a while now.

Moreover, CXL can support a memory hierarchy, which includes different speed memories such as DRAM, SCM, and SSDs. If the memory system has enough smarts to keep highly active data in the highest speed devices, an auto-tiering, shared memory pool could provide substantial capacities (10s-100sTB) of memory at a much reduced cost. This sounds a lot like what was promised by Optane.

Another topic at the show was Software Enabled/Defined Flash. There are a few enterprise storage vendors (e.g., IBM, Pure Storage and Hitachi) that design their own proprietary flash devices, but with SSD vendors coming out with software enabled flash, this should allow anyone to do something similar. Much more to come on this. Presumably, the hyper-scalers are driving this but having software enabled flash should benefit the entire IT industry.

The elephant in the room at FMS was Intel’s winding down of Optane. There were a couple of the NAND/SSD vendors talking about their “almost” storage class memory using SLC and other NAND tricks to provide Optane like performance/endurance using NAND storage.

Keith mentioned a youtube clip he saw where somebody talked about an Radeon Pro SSG ( (AMD GPU that had M.2 SSDs attached to it). And tried to show how it improved performance for some workloads (mostly 8k video using native SSG APIs). He replaced the old M.2 SSDs with newer ones with more capacity which increased the memory but it still had many inefficiencies and was much slower than HBM2 memory or VRAM. Keith thought this had some potential seeing as how in memory databases seriously increase performance but as far as I could see the SSG and it’s moded brethren died before it reached that potential.

As part of the NAND scaling discussion, Tom said one vendor (I believe Samsung) mentioned that by 2030, with die stacking and other tricks, they will be selling an SSD with 1PB of storage behind it. Can’t wait to see that.

By the way, if you are an IEEE member and are based in the USA, Tom is running for IEEE USA president this year, so please vote for him. It would be nice having a storage person in charge at IEEE.

Thomas Coughlin, President Coughlin Associates

Tom Coughlin, President, Coughlin Associates is a digital storage analyst and business and technology consultant. He has over 40 years in the data storage industry with engineering and senior management positions at several companies. Coughlin Associates consults, publishes books and market and technology reports (including The Media and Entertainment Storage Report and an Emerging Memory Report), and puts on digital storage-oriented events.

He is a regular storage and memory contributor for forbes.com and M&E organization websites. He is an IEEE Fellow, Past-President of IEEE-USA, Past Director of IEEE Region 6 and Past Chair of the Santa Clara Valley IEEE Section, Chair of the Consultants Network of Silicon Valley and is also active with SNIA and SMPTE.

For more information on Tom Coughlin and his publications and activities go to

129: GreyBeards talk composable infrastructure with GigaIO’s, Matt Demas, Field CTO

We haven’t talked composable infrastructure in a while now but it’s been heating up lately. GigaIO has some interesting tech and I’ve been meaning to have them on the show but scheduling never seemed to work out. Finally, we managed to sync schedules and have Matt Demas, field CTO at GigaIO (@giga_io) on our show.

Also, please welcome Jason Collier (@bocanuts), a long time friend, technical guru and innovator to our show as another co-host. We used to have these crazy discussions in front of financial analysts where we disagreed completely on the direction of IT. We don’t do these anymore, probably because the complexities in this industry can be hard to grasp for some. From now on, Jason will be added to our gaggle of GreyBeard co-hosts.

GigaIO has taken a different route to composability than some other vendors we have talked with. For one, they seem inordinately focused on speed of access and reducing latencies. For another, they’re the only ones out there, to our knowledge, demonstrating how today’s technology can compose and share memory across servers, storage, GPUs and just about anything with DRAM hanging off a PCIe bus. Listen to the podcast to learn more.

GigaIO started out with pooling/composing memory across PCIe devices. Their current solution is built around a ToR (currently Gen4) PCIe switch with logic and a party of pooling appliances (JBoG[pus], JBoF[lash], JBoM[emory],…). They use their FabreX fabric to supply rack-scale composable infrastructure that can move (attach) PCIe componentry (GPUs, FPGAs, SSDs, etc.) to any server on the fabric, to service workloads.

We spent an awful long time talking about composing memory. I didn’t think this was currently available, at least not until the next version of CXL, but Matt said GigaIO together with their partner MemVerge, are doing it today over FabreX.

We’ve talked with MemVerge before (see: 102: GreyBeards talk big memory … episode). But when last we met, MemVerge had a memory appliance that virtualized DRAM and Optane into an auto-tiering, dual tier memory. Apparently, with GigaIO’s help they can now attach a third tier of memory to any server that needs it. I asked Matt what the extended DRAM response time to memory requests were and he said ~300ns. And then he said that the next gen PCIe technology will take this down considerably.

Matt and Jason started talking about High Bandwidth Memory (HBM) which is internal to GPUs, AI boards, HPC servers and some select CPUs that stacks synch DRAM (SDRAM) into a 3D package. 2nd gen HBM silicon is capable of 256 GB/sec per package. Given this level of access and performance. Matt indicated that GigaIO is capable of sharing this memory across the fabric as well.

We then started talking about software and how users can control FabreX and their technology to compose infrastructure. Matt said GigaIO has no GUI but rather uses Redfish management, a fully RESTfull interface and API. Redfish has been around for ~6 yrs now and has become the de facto standard for management of server infrastructure. GigaIO composable infrastructure support has been natively integrated into a couple of standard cluster managers. For example. CIQ Singularity & Fuzzball, Bright Computing cluster managers and SLURM cluster scheduling. Matt also mentioned they are well plugged into OCP.

Composable infrastructure seems to have generated new interest with HPC customers that are deploying bucketfuls of expensive GPUs with their congregation of compute cores. Using GigaIO, HPC environments like these can overnight, go from maybe 30% average GPU utilization to 70%. Doing so can substantially reduce acquisition and operational costs for GPU infrastructure significantly. One would think the cloud guys might be interested as well.

Matt Demas, Field CTO, GigaIO

Matt’s career spans two decades of experience in architecting innovative IT solutions, starting with the US Air Force. He has built federal, healthcare, and education-based vertical solutions at companies like Dell, where he was a Senior Solutions Architect. Immediately prior to joining GigaIO, he served as Field CTO at Liqid. 

Matt holds a Bachelor’s degree in Information Technology from American InterContinental University, and an MBA from Concordia University Austin.